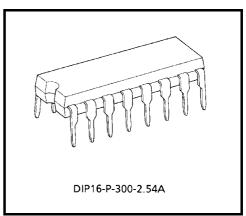
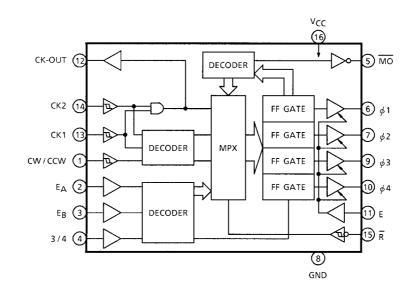
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC


TA8415P

STEPPING MOTOR CONTROLLER / DRIVER


The TA8415P is general purpose unipolar stepping motor controller / driver, applicable to 3 / 4 phase motors and 1, 1–2, 2 phase excitation drive by initial setting of control terminals.

FEATURES

- 1 chip stepping motor controller / driver.
- 3 or 4 phase and 1, 1–2, 2 phase excitation drive are available.
- CW / CCW rotation and 1 clock or 2 clock drive are available.
- Hysteresis is provided with clock, CW / CCW, reset inputs for noise protection.
- Output enable, initial detect are available.
- Output current up to 400mA (MAX.)

Weight: 1.11 g (Typ.)

BLOCK DIAGRAM

PIN FUNCTION

PIN No.	SYMBOL	PIN NAME	PIN NAME FUNCTIONAL DESCRIPTION		
1	CW / CCW	Clock Wise / Counter Clock Wise	Direction Control Input Fu	nction Table A	
2	EA	Excitation A	Phase Excitation Mode		
3	EB	Excitation B	Input	Truth Table B	
4	3 / 4	3 Phases / 4 Phases	Phase Control Input		
5	MO	Monitor Out	$\overline{\text{MO}}$ = "L" at Initial State		
6	φ1	φ1 Out	φ1 Output		
7	φ2	φ2 Out	φ2 Output		
8	GND	GND	GND		
9	φ3	φ3 Out	φ3 Output		
10	φ4	φ4 Out	φ4 Output		
11	E	Output Enable	Outputs are Enable at E =	: "H"	
12	CK-OUT	Clock-Out	Clock Output		
13	CK1	Clock I _n -1	Clock Input 1	Truth Table A	
14	CK2	Clock In-2	Clock Input 2		
15	R	Reset	Reset Input		
16	V _{CC}	V _{CC}	Vcc		

TRUTH TABLE A

CK1	CK2	CW / CCW	FUNCTION
ſ	Н	L	CW
Л	L	L	Inhibit
Н	╘┑	L	CCW
L	ſ	L	Inhibit
┫	Н	Н	CCW
	L	Н	Inhibit
Н	ſ	Н	CW
L		Н	Inhibit

TRUTH TABLE B

E _A	EB	3 / 4 (Note)		FUNCTION				
L	L	L		1 Phase Excitation				
Н	L	L	4 Phases	2 Phase Excitation				
L	Н	L		1-2 Phase Excitation				
Н	н	L	Test Mode φ1~φ4 ON					
L	L	Н		1 Phase Excitation				
Н	L	Н	3 Phases	2 Phase Excitation				
L	Н	Н		1-2 Phase Excitation				
Н	Н	Н	Test Mode φ1~φ4 ON					

Note: Conversion of Phase Excitation Mode must be made after the Reset Mode is established.

SCHEMATIC OF INPUTS AND OUTPUTS

MAXIMUM RATINGS (Ta = 25°C Unless otherwise noted)

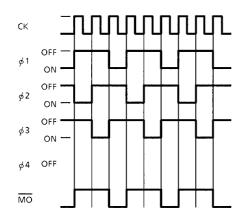
CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	V _{CC}	-0.3~7.0	V
Output Sustaining Voltage	$V_{CE(SUS)}\phi$	-0.3~28	V
Output Current (øn)	Ι _{Ουτ} φ	400	mA
O <u>utp</u> ut Current (MO , CK-OUT)	I _{OUT} MO CK-OUT	10	mA
Input Voltage	V _{IN}	-0.3~V _{CC} + 0.3	V
Input Current	I _{IN}	±1	mA
Power Dissipation	PD	1.2	W
Operating Temperature	T _{opr}	-30~85	°C
Storage Temperature	T _{stg}	-55~150	°C

RECOMMENDED OPERATION CONDITION (Ta = -30~85°C)

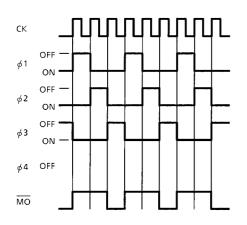
CHARACTERISTIC		SYMBOL	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Supply Voltage		V _{CC}	—	4.5	5.0	5.5	V	
Output Sustaining Voltage		$V_{CE(SUS)}\phi$	-	0	—	26	V	
Output Current on "L" Level		Ι _{Ουτ} φ	—		—	200	mA	
Output Current MO,	"H" Level	I _{OH}	—		—	-0.4	mA	
CK-OUT	"L" Level	I _{OL}			—	8	ШA	
Input Voltage		V _{IN}	Ι	0	—	V _{CC}	V	
Clock Frequency		fclock		0	_	100	kHz	
Power Dissipation		PD	-		_	0.6	W	

ELECTRICAL CHARACTERISTICS (Ta = 25°C)

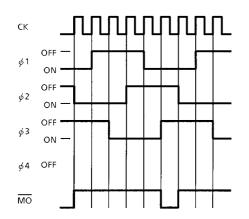
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
		_evel	VIH		—	2.0	-	_	V
Input Voltage	"L" L	evel	VIL		—	_	-	0.8 V	
Input Current		_evel	IIН		V _{CC} = 5.5 V, V _{IH} = 5.5 V	_	-	10	μA
Input Current	"L" L	evel	IIL		V _{CC} = 5.5 V, V _{IL} = 0.4 V	_	-	-0.4	mA
Hysteresis			ΔV_T	_	—	_	150	_	mV
Supply Current		ICC	_	—	_	-	100	mA	
Output Leaka	age Current	φn	Ι _{ΟΗ} φ	_	V _{CC} = 5.5 V, V _{OUT} = 26 V	_	-	100	μA
	"H" Level	MO	V _{OH}		V _{CC} = 4.5 V, I _{OH} = −0.4 mA	2.4	_	_	
	H Level	CK-OUT	⊻ОН	_	V _{CC} = 5.0 V, I _{OH} = −10 µA	4.0	-	_	
Output			V _{OL}	_	V _{CC} = 4.5 V, I _{OL} = 8 mA	_	_	0.4	V
Voltage	"L" Level	(0)		_	V _{CC} = 4.5 V, I _{OUT} = 400 mA t = 100 ms	_	_	1.1	
		φn V _{OUT} φ —	V _{CC} = 4.5 V, I _{OUT} = 200 mA t = 100 ms	_	_	0.6			

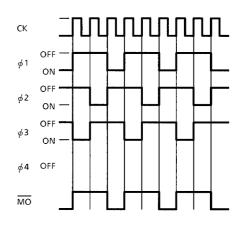

SWITCHING CHARACTERISTICS (Ta = 25°C)

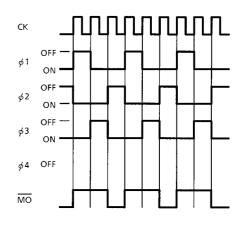
CHARACTERISTIC		SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
		CK-φn				_	2.0	_	
		CK-CK-OUT				_	1.0	_	
	"H" Level	CK-MO	t _{pLH}	—	—	_	2.8	_	
		E−φn				_	1.0	_	
Propa-		R−φn				_	2.0	_	
gation Delay		CK−φn	- - t _{рНL} —			_	1.4	_	μs
Time	"L" Level	CK-CK-OUT		_		_	0.7	_	
		CK-MO				_	2.1	_	
		E−φn			—	_	1.2	_	
		R̄-φn				_	1.0	_	
		R-MO			_	2.0	_		
Maximum Clo	ck Frequer	псу	f _{max}	_	_	_	250	_	kHz
Set Up Time CK, CW / CCW		t _{set-up}	_	_	_	0.1	_		
Hold Time CK, CW / CCW		t _{hold}	_	_	_	0.1	_		
Minimum Clock Pulse Width		t _{w(CK)}	_	_	—	1.0	_	μs	
Minimum Reset Pulse Width		t _{w(R)}	_	—	_	1.0	_		
Maximum Clo	ock Rise Tir	ne	t _r (CK)	_	—	—	10	—	

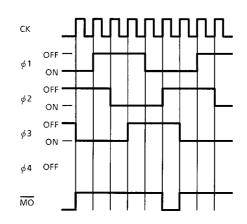

<u>TOSHIBA</u>

TIMING CHART 3 PHASES METHOD

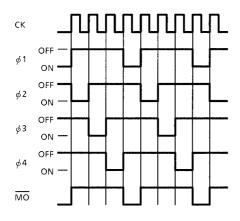

1 PHASE EXCITATION CW

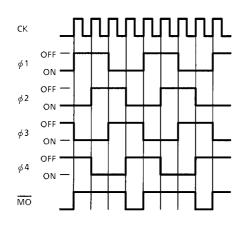

2 PHASE EXCITATION CW


1-2 PHASE EXCITATION CW

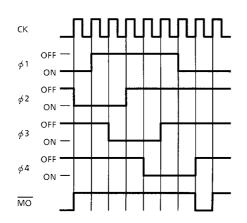

1 PHASE EXCITATION CCW

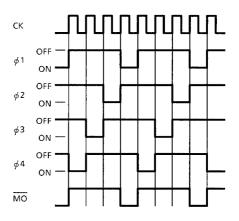
2 PHASE EXCITATION CCW

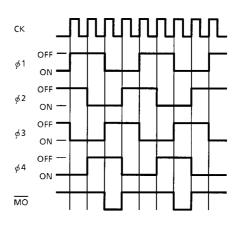

1-2 PHASE EXCITATION CCW

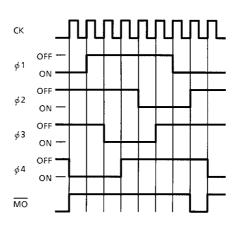

TOSHIBA

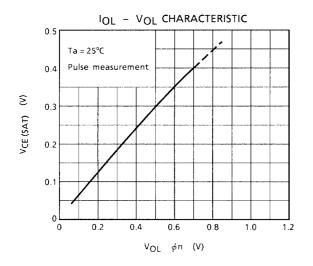
4 PHASES METHOD

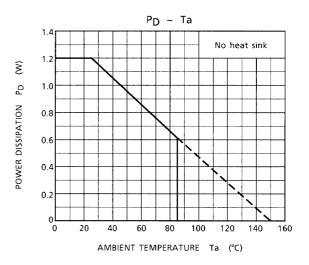

1 PHASE EXCITATION CW


2 PHASE EXCITATION CW


1-2 PHASE EXCITATION CW


1 PHASE EXCITATION CCW

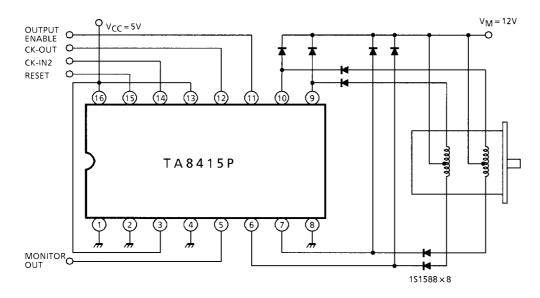

2 PHASE EXCITATION CCW

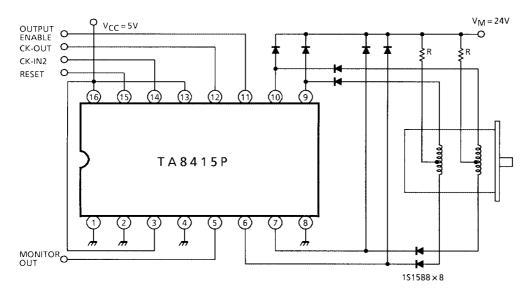


1-2 PHASE EXCITATION CCW

TOSHIBA

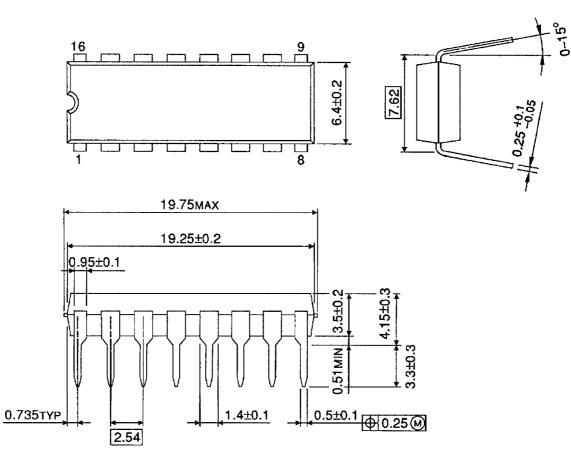
<u>TOSHIBA</u>


APPLICATION CIRCUIT 1 (TA8415P + TD62308BP 4 phase stepping motor driver circuit)


APPLICATION CIRCUIT 2 (TA8415P + TD62553S + MP4001 high efficiency stepping motor driver circuit)

APPLICATION CIRCUIT 3 4 phase motor 1–2 phase excitation drive I.

APPLICATION CIRCUIT 4 4 phase motor 1–2 phase excitation drive II.


Note: Utmost care is necessary in the design of the output line, power supply and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.

TOSHIBA

PACKAGE DIMENSIONS

DIP16-P-300-2.54A

Unit: mm

Weight: 1.11 g (Typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.